Literature Summary:
Clinical Use of ePTFE Pediatric Shunts
PALLIATIVE PEDIATRIC SHUNT PROCEDURES

Systemic-to-pulmonary artery shunts are palliative procedures performed in the neonatal period for patients with severe CCHD associated with diminished or absent pulmonary blood flow. Shunts are almost invariably used as staging procedures to increase pulmonary blood flow, improve tissue oxygenation, and promote normal development of pulmonary arteries in the interim prior to further palliative or definitive reconstruction. In most neonates, subsequent stages of cardiac repair are performed between three months and two years after the primary shunting stage, dependent upon the primary diagnosis and procedure undertaken.

Systemic-to-pulmonary artery shunts were first described by Blalock-Taussig (BT) in 1945 § (subclavian to pulmonary artery shunt), Potts in 1946 ¶ (descending aorta to left pulmonary artery shunt), and Waterston-Cooley in 1962 © and 1966 ¶ (ascending aorta to right pulmonary artery shunt). Complications of these surgical procedures included:

- Shunt thrombosis § – 7
- Distortion or kinking of the subclavian and pulmonary arteries 8 – 11
- Sacrifice of the subclavian artery leading to ischemic sequelae in the ipsilateral upper limb 12 – 14
- Lack of control over the size of the subclavian artery which is often too small in newborns to provide adequate shunting 1, 4, 7
- Limited control of the shunt diameter resulting in excessive flow and ensuing pulmonary hypertension or congestive heart failure 10, 15 – 17
- Preferential flow to a single lung 9, 10, 18 – 20
- Phrenic nerve injury 21
- Excessive or difficult dissection at the time of definitive open revision or repair 6, 17, 22

COMPARATIVE STUDIES USING CLASSIC BLALOCK-TAUSSIG SHUNTS (CBTS) VERSUS MODIFIED BLALOCK-TAUSSIG SHUNTS (MBTS)

The development of tubular prosthetic grafts was intended to reduce shunt complications. Prosthetic grafts are used as an interposition graft between the subclavian and pulmonary arteries, a procedure referred to as the MBTS 23. In the mid 1980s to 2000, the performance of CBTS (native vessels) and MBTS (ePTFE grafts) were evaluated. In a comparative study of 12 CBTS and 27 MBTS, combined early and late shunt failure was 33% for CBTS and 41% for MBTS 24. One shunt related death occurred in a patient with a CBTS. In another comparative study of 23 CBTS and 35 MBTS, Moulton et al. reported that combined early and late shunt failure occurred in 39% of CBTS and 11% of MBTS 4. Shunt related death was 9% for CBTS and 0% for MBTS. A comparative study of 29 CBTS and 24 MBTS demonstrated that combined early and late shunt failure occurred in 52% of CBTS and 21% of MBTS 15. Shunt related death was 14% in CBTS and 4% in MBTS. The authors also noted that tenting / kinking of the pulmonary artery was more common in CBTS (75%) than MBTS (36%) in a select number of patients analyzed. In a larger comparative study of 128 CBTS and 418 MBTS, combined early and late shunt failure occurred in 14% of CBTS and 8% of MBTS 25. There were no shunt related deaths. Overall, the combined data from four studies show the superior performance of MBTS made of ePTFE (Table 1).

Table 1. Comparison between CBTS (native vessels) and MBTS (ePTFE grafts) performance.

<table>
<thead>
<tr>
<th>Shunt Type</th>
<th>Number of Shunts</th>
<th>Early Failure (0 – 30 days)</th>
<th>Late Failure (> 30 days)</th>
<th>Shunt Related Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native Vessels*</td>
<td>192</td>
<td>7.3%</td>
<td>16.7%</td>
<td>3.6%</td>
</tr>
<tr>
<td>ePTFE*</td>
<td>504</td>
<td>2.0%</td>
<td>8.5%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Comparative Study References</td>
<td>5, 10, 23, 24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Average of the events reported in corresponding references. (Early failure defined as 0 – 30 days; late failure defined as > 30 days)

ePTFE SHUNTS IN CCHD REPAIR

The first reported clinical use of ePTFE grafts for palliation of CCHD in infants was in 1976 26 and has since become routine based on its superior performance and ease of use. Nanton et al. indicated that ePTFE shunts are easy to manipulate, and can be implanted and taken down more easily than a traditional shunt because the pericardium does not have to be opened 27. McKay et al. demonstrated a shunt patency rate of 97% for 29 ePTFE MBTS between a 5 and 29 month follow-up 28. In another study of 63 ePTFE MBTS, patency was 85% at three years 29. Opie et al. 10 demonstrated an overall two year 89% patency rate in 47 ePTFE shunts, and Sakai et al. 31 also showed a patency rate of 89% at three and five year follow-ups in 40 MBTS. In a different
study of 100 ePTFE MBTS, patency was 90% at one year 32. Although Fermanis et al. demonstrated a similar shunt patency of 87% at one year in 53 MBTS, the two year patency rate was 62% 33. Nonetheless, the ePTFE MBTS has been noted as the procedure of choice for increasing blood flow to the lungs in newborns or small infants with CCHD 27, 32, 34.

NORWOOD PROCEDURE

As surgical techniques and post-operative care have improved, there has been a move towards early primary repair of CCHD which eliminates the need for shunts. However, in certain cases, due to the severity of the cardiac condition (e.g., hypoplastic left heart syndrome; HLHS) or lack of donor hearts for transplantation, a palliative shunt procedure is still a required therapy 35 – 38. Once considered a uniformly fatal condition, HLHS is characterized by severe hypoplasia or absence of the left ventricle, and it is now considered one of the most challenging CCHD to repair. The current surgical strategy requires a three-stage repair 39. The first stage, the Norwood procedure, is performed within the first 30 days of life and requires the implantation of an ePTFE systemic-to-pulmonary shunt along with the reconstruction of the aorta and atrial septectomy.

The Norwood procedure poses the greatest risk of mortality for staged repair of single ventricle heart malformations with associated systemic outflow obstruction. It has been reported that between 7 – 47% of infants die before the second palliative procedure 36, 37, 40 – 42. Some of the events often associated with high mortality of the Norwood procedure are diastolic runoff and coronary steal, and the compromised balance between pulmonary and systemic blood flows associated with implantation of MBTs. In 2003, Sano et al. described a new technique that entailed the construction of a non-valved ePTFE shunt between the right ventricle and the pulmonary artery (RV-PA shunt) with the aim of reducing pulmonary overcirculation and hemodynamic instability 43. Although Sano et al. has demonstrated that the RV-PA shunt simplifies postoperative management and enhances survival of HLHS infants 38, 43 – 45, other studies have shown that outcomes are similar to the conventional Norwood procedure 46 – 48. Nonetheless, survival rates have improved over the years, attributing to pre-selection of patients, improvement in perioperative and postoperative patient management, and the general approach to care for these patients 42, 49, 50.

Cardiac transplantation is a favorable alternative to surgical intervention. Studies indicate that although the survival rates of transplanted patients are equivalent to those for staged surgical reconstruction, the quality of life and physical development is superior 51. However, approximately 25% of the infants died on the waiting list in these studies, which resulted in a lower overall survival rate than staged reconstruction. Although the quality of life argument is compelling, transplantation limits the future surgical options when the transplanted heart begins to fail and a significant shortage of suitable donor hearts restricts the applicability of transplantation for most newborns.

FREQUENCY AND CAUSES OF ePTFE SHUNT OCCLUSION

Prosthetic shunt obstruction is not uncommon 25, 33, 52 – 54. Causes of ePTFE shunt failures include thrombosis 23, 25, 32, 35 – 37, neointimal proliferation at the anastomosis 34, 54, 58 and pulmonary artery distortion or stenosis related to the fixed length of a prosthetic tube 8, 11, 23, 29, 53, 55, 59. Shunt thrombosis is the most common complication associated with pediatric shunts. Incidence of thrombotic occlusions in ePTFE shunts has been reported to range from 0 – 13%, 23, 32, 35, 57, 60, 61 and may occur early (0 – 30 days) or late (> 30 days). A review of 22 cases showed that median time to shunt occlusion was five days (0 – 1080 days) 52. Kulik et al. concluded that ePTFE shunt closure occurs within the first two months of operation 53. However, Tomizawa et al. noted that thrombus formation and intimal hyperplasia were common in explanted ePTFE pediatric shunts removed from 11 months to 5 years and 7 months implantation 58. In a series of 169 patients, Fenton et al. reported a 6% shunt thrombosis with higher occurrence in smaller shunts (13% for 3 – 3.5 mm shunts vs. 2.4% for 4 and 5 mm shunts) 52. Of the 21 interim deaths, five were attributed to shunt thrombosis all in patients with single ventricle anatomy. Lower body weight, younger age, 8, 32 smaller graft size, 23, 28, 32, 34, 54, 63 – 65 and single ventricle physiology 32, 66 have all been found to be predictors of early and late shunt failure.

SHUNT THROMBOSIS THERAPY

Current methods to address shunt thrombosis are preventative (anti-platelet or anti-coagulant therapy) 56, 61 and corrective (surgical or catheter-based shunt revisions) 62, 67. Anti-platelet therapy includes long-term postoperative administration of aspirin 56 or clopidogrel 61. Anti-coagulants such as intravenous heparin 51 has also been used to lower the risk of shunt thrombosis. Although helpful, aspirin treatment still results in over 12 – 13% thrombosis rates in higher risk conditions 54, 56. Heparin was also proven to have a beneficial but limited effect on shunt thrombosis. In a study of 546 CBTS and MBTS procedures, Al Jubair et al. reported an overall 9.1% failure rate in heparinized patients versus 13.6 % when heparin was not used 25. In the same study, administration of aspirin during follow-up reduced the failure rate from 11% to 6.7%. Despite these preventative strategies, shunt thrombosis remains a significant cause of morbidity and mortality. Corrective procedures for chronic shunt thrombosis may involve a second planned or unplanned intervention with surgery, thrombolysis, mechanical thrombectomy, balloon angioplasty, or stent implantation 62, 67.

CONCLUSIONS

The clinical use of ePTFE shunts for palliation of CCHD has become a standard and preferred practice based on its superior performance, ease of use, and reduction in morbidity and mortality in neonates. Challenges with prosthetic grafts are shunt thrombosis, neointimal proliferation, and shunt stenosis or distortion related to patient growth. The use of any shunt, whether surgical or prosthetic, requires consideration of future procedures and possible open definitive repair of the defect. This is especially true in the neonatal population given the rapid growth and development during infancy and childhood.
REFERENCES

