Techniques for the Care and Cannulation of A–V Prosthetic Grafts
Techniques for the Care and Cannulation of A-V Prosthetic Grafts

The quality of life for hemodialysis patients can be directly related to the life expectancy of their arteriovenous (A-V) grafts. Which is why we recommend the following guidelines for the safe and efficient cannulation of GORE® Vascular Grafts implanted as an A-V hemodialysis access.

Taken from the combined experiences of major dialysis centers, we have identified certain techniques that have proven to be of benefit through the years. Through the consistent use of these techniques, you will help cannulation proceed faster and with fewer problems, improving the quality of life for your patients.
About Gore Vascular Grafts

FOR MORE THAN 35 YEARS MEETING THE MOST DEMANDING PROCEDURES

Recognized by renowned surgeons worldwide for exceptional performance and quality, our vascular grafts are available in a wide range of configurations:

- Stretch and non-stretch
- Thromboresistant CBAS® Surface a heparin technology with thromboresistant properties
- Straight, tapered, and bifurcated
- External customizable ring reinforcement or internal radial support

These grafts require:

- No preclotting
- Resist dilatation and the spread of infection
- Assure utmost thrombectomy safety

CANNULATION OF Gore® VASCULAR GRAFTS

After implantation, the physician may require that the patient wait several weeks for the A-V graft to “heal” before cannulation. Typically during this time, there is tissue growth into the outer wall that stabilizes the graft. This is important in the prevention of both infection and hematoma.

In some cases, the physician may advise that the patient undergo hemodialysis before adequate healing can take place. Vascular grafts with an early cannulation indication are ideal for patients receiving hemodialysis in the early postoperative period [see SPECIAL CONSIDERATIONS FOR EARLY CANNULATION section]. Early cannulation grafts may be considered in order to avoid a central venous catheter or to permit earlier removal of the catheter.
The GORE® ACUSEAL Vascular Graft

The GORE® ACUSEAL Vascular Graft is a multilayer vascular graft which includes:

- An elastomer membrane between the inner and outer layers of expanded polytetrafluoroethylene (ePTFE)
- A luminal CBAS® Surface
- An ePTFE abluminal layer

WHO BENEFITS FROM A GORE® ACUSEAL VASCULAR GRAFT?

- Patients in need of hemodialysis who do not have a central venous catheter
- Patients with a long-term central venous catheter that need a vascular graft
- Patients who are prone to develop pseudoaneurysms in their vascular grafts or arteriovenous fistulas
- Patients who have experienced seroma formation with other vascular grafts

CANNULATION OF THE GORE® ACUSEAL VASCULAR GRAFT

The graft can be cannulated within 24 hours after implantation. As of this publication, the earliest a GORE® ACUSEAL Vascular Graft has been cannulated for hemodialysis is two hours post-implantation. This patient did not have a central venous catheter. By implanting the graft and permitting early cannulation, the patient was able to avoid a central venous catheter and the subsequent morbidity.
1. DETECTING COMPLICATIONS

Initial inspection of the access site should be part of every hemodialysis session, especially after the patient’s graft has healed. Infections, hematomas, and pseudoaneurysms can present problems, making cannulation difficult, even dangerous. Early detection of such problems and prompt referral to the patient’s physician may save the graft and perhaps the patient’s life. The most serious complications are:

INFECTION

Symptoms: Local swelling, redness, pain, and pus drainage. Should these or other suspicious symptoms be present, notify a physician immediately.

Caution: Never insert a needle into the graft through an infected area. To do so is to introduce bacteria directly into the bloodstream [See ASEPTIC PREPARATION section about the importance of rigorous aseptic techniques for reducing chances of infection].

PSUDOANEURYSM

Symptoms: A collection of blood contained by surrounding tissue, also known as false aneurysm. Two factors are primarily responsible: Repeated needle cannulation within the same area compromises the integrity of the prosthetic graft material and the presence of a venous anastomotic or outflow stenosis causes increased intragraft pressure. This pressure may force blood through the needle cannulation holes in the prosthetic graft into the perigraft tissue resulting in a pseudoaneurysm. To halt the growth of pseudoaneurysms, a percutaneous transluminal angioplasty (PTA) of all hemodynamically significant stenoses is performed to reduce the intragraft pressure and decrease the blood flow into the pseudoaneurysm.

Other complications of enlarging pseudoaneurysms include breakdown of the overlying skin, spontaneous bleeding, and acute rupture of the pseudoaneurysm capsule. Chance of prosthetic graft infection is also greater. The result of repeated needle cannulation at one site, “one-site-itis” or “cannulation site laceration (lesion)” is pseudoaneurysm. The importance of cannulating along the entire length of the prosthetic graft cannot be overstated.

HEMATOMA

Symptoms: Unchecked bleeding from a graft puncture site. Blood spreads between the tissue and the graft wall, resulting in swelling and discoloration. Do not attempt to insert a needle through a hematoma. The needle will often clot, making it necessary to puncture the graft at a new site. This reduces the available sites and complicates cannulation since pressure on the non-usable puncture must be maintained to prevent enlargement of the hematoma.

Prompt referral to a physician for removal and correction of the cause of the hematoma may be indicated depending on the severity of the hematoma. Careful technique during and after cannulation will greatly reduce the number of hematomas [see CANNULATION TECHNIQUE section].
2. CHECKING THE FLOW IN THE GRAFT

It is important to check for blood flow in the graft because reduced blood flow not only makes hemodialysis more difficult, but it also increases the chance for a graft occlusion.

HOW TO CHECK FOR ADEQUATE FLOW:

- Palpate the entire length of the graft for a strong thrill. A thrill feels like a consistent vibration under the skin, different from the feel of a pulse. A bounding pulse indicates a stenosis somewhere in the circuit. A thrill indicates sufficient blood flow.

- If unable to palpate a thrill, listen with a stethoscope for the sound, or bruit, made by the blood rushing through the graft.

- Changes in either the strength or nature of these two diagnostic procedures should be noted on the patient’s chart. Do not cannulate in the absence of either a thrill or a bruit.

Knowing the direction of the blood flow in the dialysis graft is also important. The venous needle should be placed with the direction of blood flow, assisting in the normal pattern of venous return. Ideally, the surgeon provides a diagram indicating the location of the graft and direction of the blood flow. If a diagram is not available, you can determine flow directions with this simple technique;

HOW TO CHECK FOR FLOW DIRECTION:

- Apply momentary pressure to the mid-point of the graft with your finger. Note the thrill in the graft.
- The side with the strongest pulsation is the direction from which blood enters the graft, the arterial side.

3. NEEDLE SELECTION

As a general guideline, always select the smallest gauge and shortest length needle that will achieve the required flow rate for the dialysis machine. In most cases, a one-inch needle is adequate and helps reduce the chance of damaging the back wall of the graft.

- A needle with an ultrathin wall and a back eye can be useful in this regard.
- The length of the needle chosen may vary with the depth of the graft in the tissue.
4. ASSESS PUNCTURE SITE

It is important to know what graft sites have been used during the course of hemodialysis in order to avoid “one-site-itis.” To track this history, keep a chart to map the position and date of puncture. Use the following to evaluate the efficacy of a puncture site:

HOW TO EVALUATE THE EFFICACY OF A PUNCTURE SITE:

• Puncture sites should be approximately one centimeter apart along the straight portion of the graft.

• Let two to three weeks elapse before puncturing closer than one centimeter from a previous site.

Avoid the following areas for puncturing:

• Sites within three centimeters from where the graft is sewn to the artery or the vein.

• Along the tightly curved portion of a loop graft because it is difficult to properly position the needle.

• Along the portion of the loop graft where external reinforcing rings help prevent kinking.

Cannulation should be considered a surgical procedure with risks of contamination and infection. For this reason, it is important that you perform aseptic preparation of the skin.
Aseptic Preparation

PROTECTION AND PRECAUTION:

- You may choose to wear sterile gloves, depending on procedures followed in your dialysis center. Avoid touching a disinfected puncture site with unprotected hands, non-sterile gloves or instruments, or dialysis equipment.

- Surgical masks are warranted since a high proportion of hemodialysis patients (32–81%) carry higher than normal levels of *Staphylococcus aureus* in their nares.³

PREPARATION:

- Upon entering the dialysis unit, patients should wash their access site using an antibacterial soap and water.

- Applying isopropyl alcohol prior to the antiseptic may aid in removing dirt and oils from the skin.

- Inspect the graft for possible needle cannulation sites and identify appropriate sites.

- Cleanse the area with a solution of the following:

 - **2% chlorhexidine gluconate / 70% isopropyl alcohol.** Using a back and forth friction, scrub for 30 seconds. This antiseptic has a rapid (30 second) and persistent (up to 48 hours) antimicrobial activity on the skin.

 - **70% alcohol and / or 10% povidone iodine.⁴**

Alcohol has a short bacteriostatic action time and should be applied in a rubbing motion for one minute immediately prior to needle cannulation.⁴ Povidone iodine needs to be applied for two to three minutes and must be allowed to dry prior to needle cannulation.⁴

- Allow the area to dry. Do not blot the solution.⁴
NEEDLE DIRECTION AND BLOOD FLOW:

- **For dialysis using two needles**, the arterial needle may be positioned either with, or against, the blood flow. However, less turbulence will result if the needle points in the direction of the blood flow. The venous (or return needle must always be positioned in the direction of blood flow.
- **In single-needle dialysis**, the needle must always point in the direction of blood flow.

Step 1: Pull the skin over the cannulation site taut in the opposite direction of needle insertion. Excessive pressure to the cannulation site may cause the graft to flatten making cannulation difficult.

Step 2: Usually the bevel of the needle faces upward and is introduced into the skin at an angle determined by graft configuration, location, and depth.

Step 3: Gently insert the needle through the graft wall while maintaining this angle.

Holding the graft in place may aid in accurately piercing the graft wall. Watch for blood flashback into the cannula. If the blood flashback does not appear or seems sluggish, verify the needle position by attempting to irrigate the needle and tubing with a syringe. A decrease or lack of blood flashback may occur because the:

- bevel of the needle is pressed against the graft wall
- needle is only partly in the graft lumen
- needle has passed through the back wall of the graft
- patient has low blood pressure
- graft has low blood flow due to obstruction

After confirming an adequate blood flashback, continue to insert the needle for no more than one-eighth of an inch to ensure the needle tip is positioned well inside the graft.

Step 4: Continue to introduce the needle until it has been inserted up to the hub.

Step 5: Moving the shaft close to, and nearly parallel with, the skin surface may minimize the chance of puncturing the back wall of the graft during full insertion.
After Dialysis is Completed

Please note that during all phases of needle insertion, care must be taken not to contaminate the disinfected area around the puncture site. Investigate unusual resistance or pain occurring during cannulation. Once the needle is fully inserted and the wings taped, the patient should not experience discomfort. Persistent pain may indicate needle puncture of the back wall of the graft. In this condition, flow will often be sluggish and erratic upon aspiration. Correct such problems before continuing dialysis.

Step 6: Upon completion of dialysis, carefully withdraw the needle and apply digital compression to the exit site to halt bleeding. Mild compression is more effective when applied to the area where the needle entered the graft, rather than where it entered the skin. Maintain light pressure with a cotton ball or folded gauze dressing over the site of graft puncture, until the bleeding stops. Typically, 10–15 minutes of compression is needed to reach hemostasis.

Inspect the puncture site for any external sign of abnormal bleeding.

There is a fine balance between enough pressure to prevent needle hole bleeding and excessive compression, which may result in graft thrombosis. The decision to use adjustable arm clamps to control bleeding should be made on a patient-by-patient basis.

Indicate and date the needle puncture site on the patient’s chart.
In selected cases, a physician may decide that a patient must undergo hemodialysis shortly after the vascular access graft has been implanted. Extra precautions must be taken with these patients because the danger of venous outflow damage, hematoma formation, and infection is great.

Postoperative swelling may make it difficult to locate the graft and place the needle. A misplaced needle may damage the graft or puncture the back wall. Gentle digital pressure can be used to temporarily displace the swelling. This makes it easier to locate the graft by touch or by listening for the bruit with a stethoscope. A sketch by the surgeon can be extremely helpful in these cases.

Absolute adherence to aseptic technique is critical in early cannulation. It is advisable to wear sterile gloves and face masks since surgical incisions have not had sufficient time to heal adequately.

After dialysis is complete, pressure should be applied to the graft puncture site until the bleeding stops. This typically takes 10–15 minutes.

Certain dialysis units successfully employ the following practices for cannulation within two weeks of implantation:

- Local infiltration of Lidocaine
- Graft movement prevented during cannulation
- Swift, clean puncture
- Small (17 gauge) needles
- 200–250 ml / min blood flow for the entire dialysis session
- Low dose heparin
A List of Reminders

- Inspect the access site for any complications
- Assess blood flow in the graft and determine its direction
- Select the smallest, shortest needle possible
- Disinfect the chosen puncture site and do not touch again
- Rotate the puncture sites every session
- Insert the needle through the graft at an appropriate angle
- Minimize the chance of puncturing the back wall of the graft during insertion
- Evaluate the adequacy of the blood flow into and out of the needles
- Upon needle removal, non-occlusive pressure on the graft puncture site is needed until bleeding stops
REFERENCES

BIBLIOGRAPHY

Vascular Access for Hemodialysis VII; May 4-5, 2000; San Antonio, TX. Page 11.

Hakaim AG, Scott TE. Durability of early prosthetic dialysis graft cannulation: Journal of Vascular Surgery

Lumsden AB. Prospective, randomized multicenter trial of stented ePTFE end-to-side carotid artery bypass grafts. Journal of Vascular Surgery

