Optimal Outflow with
Expanded Treatment Options

10 cm Configuration
NOW AVAILABLE

PERFORMANCE
through innovation
Three Trusted Technologies
One of a Kind Graft

A Proven Thromboresistant surface throughout graft lumen

Unmatched Graft handling characteristics

Nitinol Reinforced Section allows convenient vessel insertion
A New Way in for Better Outflow

- The GORE® Hybrid Vascular Graft is an expanded polytetrafluoroethylene (ePTFE) vascular prosthesis that has a section reinforced with nitinol. The nitinol reinforced section is partially constrained to allow for easy insertion and deployment into a vessel. The GORE® Hybrid Vascular Graft has a continuous lumen bonded with the CARMEDA® BioActive Surface (CBAS® Surface) consisting of a stable, covalently bonded reduced molecular weight heparin.

Open and Over the Wire Implantation Options

- The versatility of an endoluminal anastomosis can be utilized in vascular graft applications
- Allows for access to challenging site locations and deep vessels
- Reduces vessel manipulation and dissection
Extended Reach with an Endoluminal Anastomosis

AV Access: Designed to Reduce Intimal Hyperplasia
- Performance improvement in the most challenging AV access patient populations
- Expands treatment options for patients with challenging site locations and deep vessels
- No reported seroma formation

Aortic Debranching: More Control In Your Hands and Time On Your Side
- Reduction in organ ischemic time
- Ease of deployment
- Decreased operative exposure and trauma to patient
- Easier access to deep aortic branch arteries

Arterial Bypass: A New Option for Challenging Lower Extremity Anatomy
- Expands treatment options: behind the knee and diseased arteries
- Sutureless outflow anastomosis
- Reduces dissection and artery manipulation
More treatment options.

Now within reach.

New 10 cm Nitinol Reinforced Section.

- Extend reach with an endoluminal anastomosis for access to deep vessels
- Extend support through high compression and tortuous areas
- Extend positioning options for the landing zone
A New Way in for Better Outflow

- Improved hemodynamics as compared to an end-to-side anastomosis
- Continuous luminal surface for ease of revision
- Nitinol reinforced section shields the vessel lumen area most susceptible to failure

Reduction in Outflow Stenosis

CT Scans from a porcine arteriovenous graft stenosis model. (A) Day 5 CT Scan: Note the early thrombosis of the control PTFE graft (right) with a patent GORE® Hybrid Vascular Graft (left). (B) Day 42 CT Scan in the same animal as in (A). Note the still patent GORE® Hybrid Vascular Graft (left). Four of the 7 control ePTFE grafts thrombosed at day 42 as compared to 1 of the 7 GORE® Hybrid Devices. As presented by Dr. Prabir Roy-Chaudhury in abstract form at the American Society of Nephrology Kidney Week 2011.
The GORE® Hybrid Vascular Graft and two competitive vascular grafts were tested in a pressurized benchtop comparison using bovine serum.

A. GORE® Hybrid Vascular Graft: No weeping at 30 psi

B. Competitor Graft 1: Weeping recorded at 6 psi

C. Competitor Graft 2: Weeping recorded at 10 psi

Unmatched Handling Consistent with all Gore Vascular Grafts

- Flexible at curves for kink resistance
- Precise arterial suturing and anastomotic tailoring
- Smooth passage through tissue tunnel

Embedded low permeability film provides a barrier to ultrafiltration

The GORE® Hybrid Vascular Graft and two competitive vascular grafts were tested in a pressurized benchtop comparison using bovine serum.

A. GORE® Hybrid Vascular Graft: No weeping at 30 psi

B. Competitor Graft 1: Weeping recorded at 6 psi

C. Competitor Graft 2: Weeping recorded at 10 psi
CARMEDA® BioActive Surface (CBAS® Surface)

- Unique Heparin Bonded CBAS® Surface
- Proprietary end-point covalent bonding
- Sustained heparin bioactivity

- Heparin molecules are bonded to the luminal surface
- Bioactive site of the heparin molecule binds to antithrombin (AT)

- Antithrombin binds to thrombin (T) – a neutral AT-T complex is formed
- Thrombin loses its ability to catalyze the conversion of fibrinogen to fibrin

- Neutral AT-T complex detaches from the heparin molecule
- Heparin bioactive site becomes available to again bind antithrombin

The bioactive luminal surface of a GORE® Hybrid Vascular Graft remains free of thrombus, while the non-bioactive surface of a control graft is covered with thrombus. Grafts were compared in a 90 minute acute canine blood contact model.