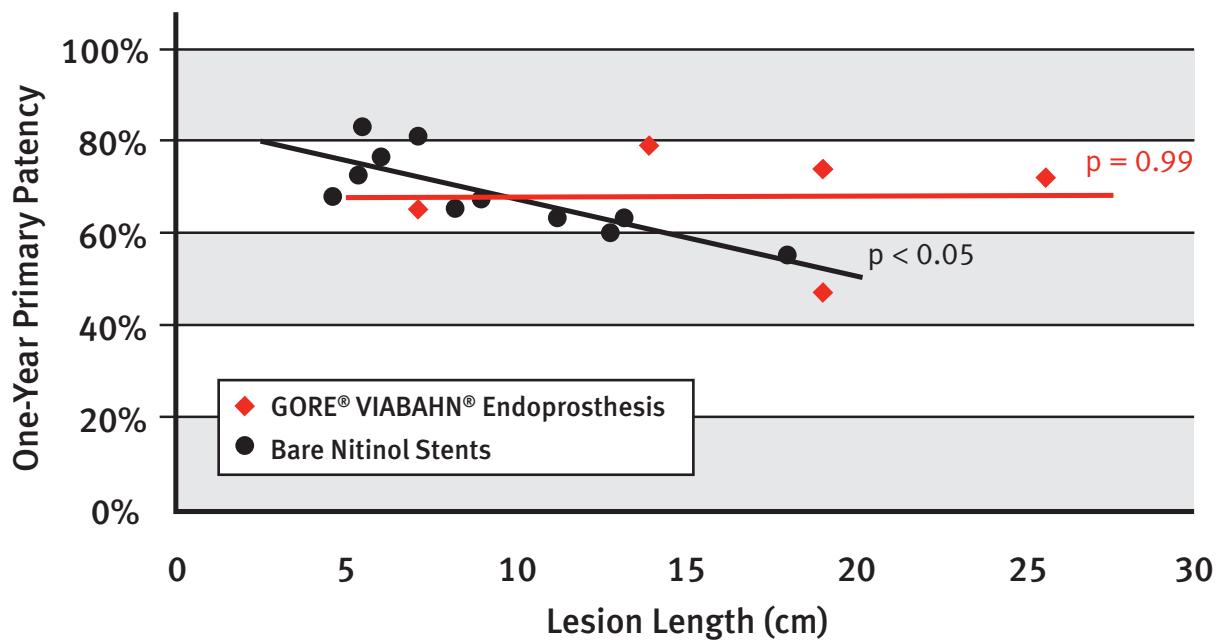


→ THE LONG SFA LESION SOLUTION



PERFORMANCE
through data

► Only the GORE® VIABAHN® Endoprosthesis covers diseased and irregular tissue of the arterial wall

- GORE® VIABAHN® Endoprosthesis
 - Patency is independent of lesion length in several studies¹⁻⁶
 - In the Gore VIPER Clinical Study, no difference in primary patency between lesions ≥ 20 cm and < 20 cm ($p = 0.51$)⁶
 - Fracture is rare even in long SFA lesions⁷
- Bare Nitinol Stents
 - Patency is dependent on lesion length and severity in several studies¹⁰⁻¹⁷
 - In Durability II study, primary patency was 81.3% in < 8 cm lesions and 55.8% in > 8 cm lesions¹⁷
 - 31% fracture rate at one year in long SFA lesions⁷; stent fracture may affect device primary patency^{8,9}

► The GORE® VIABAHN® Endoprosthesis exhibits proven performance in long, challenging SFA lesions

Prospective Randomized or Prospective Multi-Center (> 2 sites) SFA studies included^{1, 2, 6, 7, 18-27}. Registry studies not included. Patency definitions may vary. P value indicates result of t-test on slope of linear regression compared to zero.

Long SFA Lesion Treatment with Three Year Follow-up

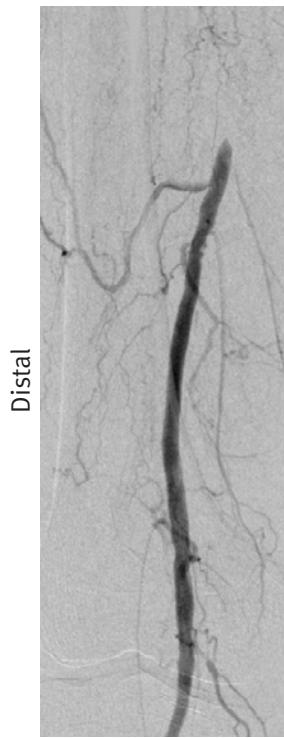


Figure 1. Original CTO (32 cm)

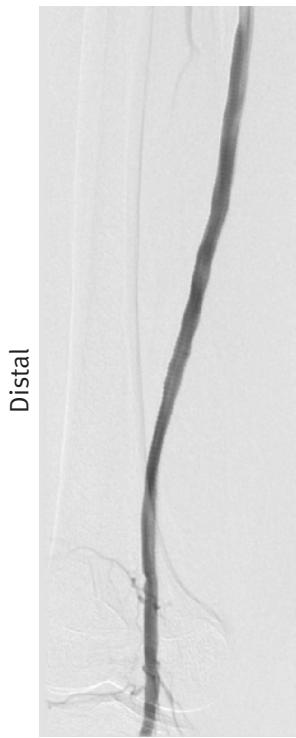
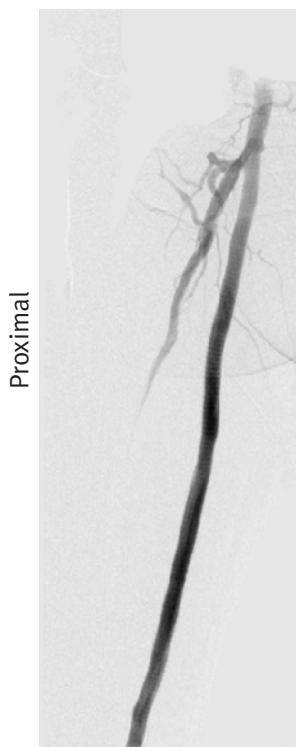



Figure 2. Post – GORE® VIABAHN® Endoprostheses with PROPATEN Bioactive Surface * Placement

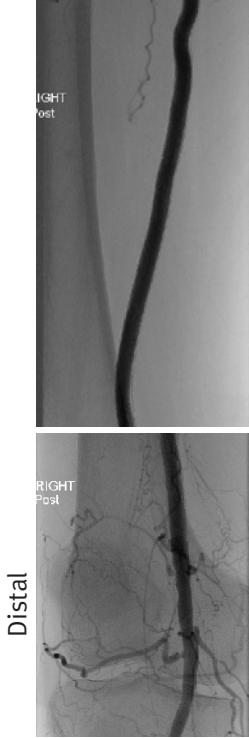
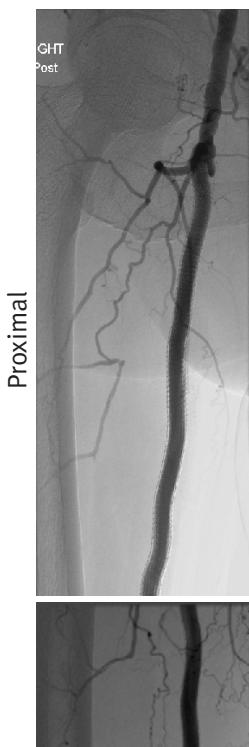



Figure 3. Three Year Follow-up

Figure 1. Patient with 32 cm long CTO with lifestyle limiting claudication and hematologic disorder.

Figure 2. Patient treated with 7 x 15, 7 x 15 and 7 x 10 GORE® VIABAHN® Endoprostheses with PROPATEN Bioactive Surface. Post-procedure angiogram confirms good device sizing at proximal and distal landing zones. Around two and a half years, antiplatelet and anegrelide were discontinued for a surgery and the stent grafts thrombosed. This was resolved by thrombolysis and the additional implant of a stent graft proximal to the original GORE® VIABAHN® Devices.

Figure 3. Devices are widely patent at three years.

Images courtesy of Barry Weinstock, MD.

* The GORE® VIABAHN® Endoprostheses with PROPATEN Bioactive Surface is known in some markets as the GORE® VIABAHN® Endoprostheses with Heparin Bioactive Surface.

References

1. Saxon RR, Dake MD, Volgelzang RL, Katzen BT, Becker GJ. Randomized, multicenter study comparing expanded polytetrafluoroethylene-covered endoprosthesis placement with percutaneous transluminal angioplasty in the treatment of superficial femoral artery occlusive disease. *Journal of Vascular & Interventional Radiology* 2008;19(6):823-832.
2. McQuade K, Gable D, Pearl G, Theune B, Black S. Four-year randomized prospective comparison of percutaneous ePTFE/nitinol self-expanding stent graft versus prosthetic femoral-popliteal bypass in the treatment of superficial femoral artery occlusive disease. *Journal of Vascular Surgery* 2010;52(3):584-591.
3. Jahnke T, Andresen R, Müller-Hülsbeck S, et al. Hemobahn stent-grafts for treatment of femoropopliteal arterial obstructions: midterm results of a prospective trial. *Journal of Vascular & Interventional Radiology* 2003;14(1):41-51.
4. Bray PJ, Robson WJ, Bray AE. Percutaneous treatment of long superficial femoral artery occlusive disease: efficacy of the Hemobahn Stent-Graft. *Journal of Endovascular Therapy* 2003;10(3):619-628.
5. Fischer M, Schwabe C, Schulte K-L. Value of the Hemobahn/Viabahn Endoprosthesis in the treatment of long chronic lesions of the superficial femoral artery: 6 years of experience. *Journal of Endovascular Therapy* 2006;13(6):281-290.
6. VIPER: heparin-coated Viabahn with contoured edge exhibits improved patency in the SFA at one year. *vascularNEWS International* 2011;51:2. <http://www.cxvascular.com/vn-latest-news/vascular-news--latest-news/heparin-coated-viabahn-with-contoured-edge-exhibits-improved-patency-in-the-sfa-at-one-year>. Published November 3, 2011. Accessed November 4, 2011.
7. Ansel GM. 1-year interim results from the VIBRANT (Viabahn Versus Bare-Nitinol Stent) study of the Gore Viabahn endoprosthesis. Presented at Vascular Interventional Advances (VIVA) Annual Meeting; Oct. 20-23, 2009; Las Vegas, NV.
8. Scheinert D, Scheinert S, Sax J, et al. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. *Journal of the American College of Cardiology* 2005;45(2):312-315.
9. Iida O, Nanto S, Uematsu M, Ikeoka K, Okamoto S, Nagata S. Influence of stent fracture on the long-term patency in the femoro-popliteal artery. *JACC : Cardiovascular Interventions* 2009;2(7):665-671.
10. Dosluoglu HH, Cherr GS, Lall P, Harris LM, Dryjski ML. Stenting vs above knee polytetrafluoroethylene bypass for TransAtlantic Inter-Society Consensus-II C and D superficial femoral artery disease. *Journal of Vascular Surgery* 2008;48(5):1166-1174.
11. Surowiec SM, Davies MG, Eberly SW, et al. Percutaneous angioplasty and stenting of the superficial femoral artery. *Journal of Vascular Surgery* 2005;41(2):269-278.
12. Ihnat DM, Duong ST, Taylor ZC, et al. Contemporary outcomes after superficial femoral artery angioplasty and stenting: the influence of TASC classification and runoff score. *Journal of Vascular Surgery* 2008;47(5):967-974.
13. Gur I, Lee W, Akopian G, Rowe VL, Weaver FA, Katz SG. Clinical outcomes and implications of failed infrainguinal endovascular stents. *Journal of Vascular Surgery* 2011;53(3):658-666.
14. Soga Y, Iida O, Hirano K, Yokoi H, Nanto S, Nobuyoshi M. Mid-term clinical outcome and predictors of vessel patency after femoropopliteal stenting with self-expandable nitinol stent. *Journal of Vascular Surgery* 2010;52(3):608-615.
15. Suzuki K, Iida O, Soga Y, et al. Long-term results of the S.M.A.R.T. Control(TM) stent for superficial femoral artery lesions, J-SMART registry. *Circulation Journal* 2011;75(4):939-944.
16. Dearing DD, Patel KR, Compoginis JM, Kamel MA, Weaver FA, Katz SG. Primary stenting of the superficial femoral and popliteal artery. *Journal of Vascular Surgery* 2009;50(3):542-547.
17. EverFlex™ Self-Expanding Peripheral Stent System. Plymouth, MN: Covidien; 2012. [Product brochure] 115661-001(A).
18. Laird JR, Katzen BT, Scheinert D, et al; RESILIENT Investigators. Nitinol stent implantation versus balloon angioplasty for lesions in the superficial femoral artery and proximal popliteal artery: twelve-month results from the RESILIENT randomized trial. *Circulation: Cardiovascular Interventions* 2010;3(3):267-276.
19. Zeller T, Tiefenbacher C, Steinkamp HJ. Nitinol stent implantation in TASC A and B superficial femoral artery lesions: the Femoral Artery Conformexx Trial (FACT). *Journal of Endovascular Therapy* 2008;15(4):390-398.
20. Matsumura J; DURABILITY II Investigators. Durability II. Full data set at 12 months. Presented at the International Symposium on Endovascular Therapy (ISET); January 15-19, 2012; Miami Beach, FL.
21. Krakenberg H, Schlüter M, Steinkamp HJ, et al. Nitinol stent implantation versus percutaneous transluminal angioplasty in superficial femoral artery lesions up to 10 cm in length. The Femoral Artery Stenting Trial (FAST). *Circulation* 2007;116(3):285-292.
22. Dake MD, Ansel GM, Jaff MR, et al; Zilver PTX Investigators. Paclitaxel-eluting stents show superiority to balloon angioplasty and bare metal stents in femoropopliteal disease: twelve-month Zilver PTX randomized study results. *Circulation: Cardiovascular Interventions* 2011;4(5):495-504.
23. Dick P, Wallner H, Sabeti S. Balloon angioplasty versus stenting with nitinol stents in intermediate length superficial femoral artery lesions. *Catheterization & Cardiovascular Interventions* 2009;74(7):1090-1095.
24. Schillinger M, Sabeti S, Dick P, et al. Sustained benefit at 2 years of primary femoropopliteal stenting compared with balloon angioplasty with optional stenting. *Circulation* 2007;115(21):2745-2749.
25. Sabeti S, Czerwenka-Wenkstetten A, Dick P, et al. Quality of life after balloon angioplasty versus stent implantation in the superficial femoral artery: findings from a randomized controlled trial. *Journal of Endovascular Therapy* 2007;14(4):431-437.
26. Duda SH; SUPER-SL Investigators. The SUPER-SL Study. Multi-center, head-to-head comparison of the S.M.A.R.T.® CONTROL Nitinol Stent (Cordis®) with the Luminexx 6F Stent (Bard®) for the treatment of long TASC C & D superficial femoral artery lesions. Presented at the Leipzig Interventional Course (LINC); January 13-17, 2009; Leipzig, Germany.
27. Lammer J, Dake MD, Bleyen J, et al. Peripheral arterial obstruction: prospective study of treatment with a transluminally placed self-expanding stent graft. *Radiology* 2000;217(1):95-104.

W. L. GORE & ASSOCIATES, INC.

Flagstaff, AZ 86004

+65.67332882 (Asia Pacific) 800.437.8181 (United States)
00800.6334.4673 (Europe) 928.779.2771 (United States)

goremedical.com

Products listed may not be available in all markets.

GORE®, PERFORMANCE THROUGH DATA, PROPATEN, VIABAHN® and designs are trademarks of W. L. Gore & Associates.

© 2013 W. L. Gore & Associates, Inc. AR0308-EU1 JUNE 2013